

Aspects of Modelling the Cleaning of a Chocolate with Yield Stress in a pipe using CFD

<u>V. Liebmann¹</u>, M. Heide², K. Schoppmann¹, H. Köhler² and F. Rüdiger¹ TU Dresden // Institute of Fluid Mechanics¹ TU Dresden // Institute of Natural Materials Technology²

Lille, 28.03.2022

Challenges in chocolate cleaning

- Chocolate consumption per year in Germany

- Empirical design of cleaning processes

Improvement of cleaning processes through use of CFD simulation

Cleaning of chocolate

- Cleaning of chocolate from pipework by **flushing** displaced chocolate with displacing chocolate
 - White chocolate = **displaced**
 - Dark chocolate = **displacing**

- Modelling requirements and structure of this presentation
 - Fluid properties
 - o Rheology
 - o Density
 - Chocolate specific phenomena
 - o Wallslip
 - Numerical approach

Aspects of Modelling the Cleaning of Chocolate Rheology

- Measurement of rheological data of
 white and dark chocolate for different
 temperatures
 - Fit of different models to experimental data
 - Comparison of the fit quality
- Rheological models with yield stress
 - Consideration of Bingham-, Casson, Herschel-Bulkley and Windhab Model

Aspects of Modelling the Cleaning of Chocolate Rheology

Windhab model

 η_{∞}

 τ_1

 $\dot{\gamma^*}$

•

$$\tau_{\rm mod}(\dot{\gamma}) = \tau_0 + \eta_{\infty} \, \dot{\gamma} + (\tau_1 - \tau_0) \left(1 - e^{-\frac{\dot{\gamma}}{\dot{\gamma}^*}} \right)$$

- Great fit for all chocolates, temperatures and shear rates
- Recommendation by IOCCC

• Physical model parameters

 au_0 yield stress

- viscosity for $\dot{\gamma} \rightarrow \infty$
- extrapolated yield stress
 - shear rate at 63% of $(au_1 au_0)$

Aspects of Modelling the Cleaning of Chocolate Rheology

Implementation of Windhab model in OpenFOAM using the kinematic viscosity

• Limited by ν_{max} , to avoid $\nu_{\text{mod}}(\dot{\gamma} \rightarrow 0) \rightarrow \infty$

$$v_{\text{mod}} = \max\left(v_{\text{max}}, \frac{\tau_{\text{mod}}(\dot{\gamma})}{\rho\min(SMALL, \dot{\gamma})}\right)$$

- Verification of the implementation
 - Maximum relative error ε at plug flow radius and constant relative error in plug flow region
 - Increasing $\frac{\nu_{\text{max}}}{\nu_{\infty}}$ leads to smaller errors but also longer computation times

Aspects of Modelling the Cleaning of Chocolate Density

Aspects of Modelling the Cleaning of Chocolate Wallslip

- Chocolate = suspension of cocoa, sugar and milk particles in cocoa butter
- Segregation of particles leads to different rheology
- Resolution of small layer with different rheology → high computational cost → model as wall slip velocity instead

[1] E. Talansier et al.: Accurate methodology to determine slip velocity, yield stress and the constitutive relation for molten chocolate. *Journal of Food Engineering*, 244:220–227, 2019

Aspects of Modelling the Cleaning of Chocolate Numerical model

MultiphaseInterFoam Built-in **OpenFOAM** solver ٠ Two phases: white and dark chocolate, isothermal ٠ $\frac{\partial u_j}{\partial x_i} = 0$ $\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_j u_i)}{\partial x_i} = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_i} (\tau_{ij})$ $\frac{\partial \alpha}{\partial t} + \frac{\partial (\alpha u_j)}{\partial x_i} = 0$

- Geometry initally filled with white chocolate
- Inlet with dark chocolate

Cleaning simulation Results

- **Cleaning starts** when front reaches cross section \rightarrow $A_{\rm fl} > 0$
- Quick increase in cleaned cross-section due to
 displacement of white chocolate in core region
- Removal of remaining white chocolate layers on the walls slower
- Influence of elbow on distribution of chocolate
 downstream only visible for small ratio of $A_{\rm fl}/A$

Cleaning simulation Results

Aspects of Modelling the Cleaning of a Chocolate with Yield Stress in a pipe using CFD V. Liebmann, M. Heide, K. Schoppmann, H. Köhler and F. Rüdiger Fouling and Cleaning in Food Processing Conference 2022

Folie 11

z = -0.4 m

z = -0.3 m

Cleaning simulation Conclusion and outlook

- Rheology of chocolate best described by Windhab model for different temperatures and shear rates
- Influence of **wallslip** negligible for high ratios of wall shear stress to yield stress
- Removal of chocolate from plug flow region quick, whereas removal from walls slow
- Velocity profile not differentiable near the interface for low ratios of flushed cross-section to overall cross-section
- Definition of a **cleanliness criterion**, e.g. minimal residual layer height

